3.865 \(\int \frac{\sqrt{1+x}}{\sqrt{1-x} \sqrt{x}} \, dx\)

Optimal. Leaf size=10 \[ 2 E\left (\left .\sin ^{-1}\left (\sqrt{x}\right )\right |-1\right ) \]

[Out]

2*EllipticE[ArcSin[Sqrt[x]], -1]

________________________________________________________________________________________

Rubi [A]  time = 0.003175, antiderivative size = 10, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.045, Rules used = {110} \[ 2 E\left (\left .\sin ^{-1}\left (\sqrt{x}\right )\right |-1\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x]/(Sqrt[1 - x]*Sqrt[x]),x]

[Out]

2*EllipticE[ArcSin[Sqrt[x]], -1]

Rule 110

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Sqrt[e]*Rt[-(b/d)
, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/b, x] /; FreeQ[{b, c, d, e, f}, x] &&
NeQ[d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-(b/d), 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{1+x}}{\sqrt{1-x} \sqrt{x}} \, dx &=2 E\left (\left .\sin ^{-1}\left (\sqrt{x}\right )\right |-1\right )\\ \end{align*}

Mathematica [C]  time = 0.0233209, size = 64, normalized size = 6.4 \[ \frac{2 x \sqrt{1-x^2} \left (3 \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};x^2\right )+x \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};x^2\right )\right )}{3 \sqrt{-(x-1) x} \sqrt{x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x]/(Sqrt[1 - x]*Sqrt[x]),x]

[Out]

(2*x*Sqrt[1 - x^2]*(3*Hypergeometric2F1[1/4, 1/2, 5/4, x^2] + x*Hypergeometric2F1[1/2, 3/4, 7/4, x^2]))/(3*Sqr
t[-((-1 + x)*x)]*Sqrt[1 + x])

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 39, normalized size = 3.9 \begin{align*} 2\,{\frac{\sqrt{2}\sqrt{-x} \left ({\it EllipticF} \left ( \sqrt{1+x},1/2\,\sqrt{2} \right ) -{\it EllipticE} \left ( \sqrt{1+x},1/2\,\sqrt{2} \right ) \right ) }{\sqrt{x}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(1/2)/(1-x)^(1/2)/x^(1/2),x)

[Out]

2*2^(1/2)*(-x)^(1/2)*(EllipticF((1+x)^(1/2),1/2*2^(1/2))-EllipticE((1+x)^(1/2),1/2*2^(1/2)))/x^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x + 1}}{\sqrt{x} \sqrt{-x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(1-x)^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x + 1)/(sqrt(x)*sqrt(-x + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{x + 1} \sqrt{x} \sqrt{-x + 1}}{x^{2} - x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(1-x)^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(x + 1)*sqrt(x)*sqrt(-x + 1)/(x^2 - x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x + 1}}{\sqrt{x} \sqrt{1 - x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(1/2)/(1-x)**(1/2)/x**(1/2),x)

[Out]

Integral(sqrt(x + 1)/(sqrt(x)*sqrt(1 - x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x + 1}}{\sqrt{x} \sqrt{-x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(1-x)^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x + 1)/(sqrt(x)*sqrt(-x + 1)), x)